SAMP03 高速高精度張力信號放大器/變送器 High Speed & High Precison Tension Signal Amplifier/Transmitter

安全注意事項

(請務必使用前閱讀)

	爲了保證安全使用本產品	
店田斉口時	建田后亿细期落大齐中体田沿明者	が建っ

- ●使用產品時,請用戶仔細閱讀本產品使用說明書,並請充分注 意安全,正確使用本產品
- 盡管本產品是在嚴格的質量管理體制制造的,但為預防在設備上使用本產品時,因本產品的故障造成重大事故或損失發生,請在系統上設置備份以及故障自動保護功能。
- 另外,本產品使用說明書將安全注意事項的等級分爲"危險", "注意"兩個級別。其含義和標誌如右欄所示。

◆ 一. 產品介紹

SAMP03是一款高速度高精度的張力檢測器信號放大器、變送器。SAMP03非常適合用於張力信號測量,張力控制的應用。除了兩個張力信號輸入通道外,SAMP03還額外擴展了兩個支持0~10V輸入的12位模數轉換器(ADC), 1路0~10V(或4~20mA)輸出的數模轉換器(DAC),1路帶有光電隔離的NPN型開關量輸入,通過Modbus通訊接口,可以作為PLC的一個擴展模塊使用。另外,SAMP03帶有一塊真彩色顯示的觸摸屏幕,人機界面非常友好,操作簡便。

■功能特點

- ▲ 2路張力信號輸入通道,可支持±20mv或±200mV的差分信號輸入,兼容市面上絕大多數張力檢測器的輸出信號。
- ▲ 高速32位CPU處理,帶數字濾波器,信號更新快速穩定,數據更新率達77Hz
- ▲ 差分輸入, 適合連接電橋式檢測器和LVDT微位移張力檢測器
- ▲ 高穩定性設計, 輸入、輸出端口帶有ESD保護
- ▲ 主通道部分使用極低溫飄補品器件, 溫飄極小
- ▲ 真彩色顯示,觸摸屏操控,界面美觀使用,操作方便,無需看說明書也能輕松操作
- ▲ Modbus通訊接口,物理鏈路為RS485
- ▲ 擴展1路帶有光電隔離的開關量輸入
- ▲ 擴展2路支持0~10V輸入的12位高精度模數轉換器(ADC)
- ▲ 24V供電, 功耗僅1.3W
- ▲ 體積小巧,外觀精美,安裝在電箱內,看起來更具科技感

供電電壓	DC24V, 55mA
主通道供電電壓	DC5V, 200mA Max
主通道輸入信號電平	差分±20mV或±200mV, 共模-0.3V~4.0V
主通道溫度漂移	0.5ppm/℃
主通道數據更新率	低速18Hz, 高速77Hz
開關量輸入	1路NPN
輔助類比量輸入	2路0 [~] 10V
輔助類比量輸入分辨率	12位ADC
類比量輸出	1路0~10V或0~20mA
類比量輸出分辨率	12位DAC
通訊接口	RS-485,8位數據,1停止位,無奇偶校驗
通訊協議	Modbus RTU
屏幕顯示	2.8寸26萬色TFT
人機交互方式	觸摸屏
防護等級	lp53

技术参数:

SAMP03高速高精度张力信号放大器/变送器

◆ 二. 產品安裝

1.產品尺寸

圖1.俯視圖

圖2.側視圖

2.電氣連接

2.1 系統電氣圖

2.2 電氣連接注意事項

1. 放大器供電電源為DC24V, <u>千萬不能直接接到220V或380V交流電源</u>。

2. 放大器主通道提供一個DC5V的電源供電給檢測器,最大帶載200mA,如果檢測器是電橋式,請務必使用該 電源供電。如果使用其它電源供電可能會帶來額外的溫度漂移。

3. 為了保證有最高的測量精度,檢測器的外殼必須屏蔽接地,而且必須跟放大器共用一條地線。

4. 為了保證有最高的測量精度,檢測器的連接線必須帶有屏蔽層,並且線長越短越好。

5. 外部接線端子為插拔式端子, 接線時最好使用合適線徑的冷壓端子, 以保證良好的電氣接觸性能。

6.擴展的開關量輸入帶有光電隔離,輸入信號類型為NPN型。

2.3 接線端子說明(詳見下一頁)

2.3 接線端子說明

主通道檢測器接口:

序號	名稱	類型	技術參數	說 明
1	SG	輸出		檢測器信號線屏蔽層
2	S+	輸入	±20mV或±200mV	檢測器信號+
3	S-	輸入	±20mV或±200mV	檢測器信號-
4	GND	輸出	GND	檢測器供電電源
5	5V	輸出	DC 5V,70mA Max	檢測器供電電源

外部功能端子(插拔式端子):

序號	名稱	類型	技術參數	說明
1	24V	輸入	DC 24V	供電電源輸入
2	GND	輸入	GND	供電電源輸入
3	<u> </u>	輸入		接地端子
4	MC	輸出	GND	開關量輸入端子的公共端,內部與GND相連
5	MC1	輸入	NPN	開關量輸入端子MC1
6				
7				
8	AGND	輸出		類比量地
9	OUT	輸出	0~10V	類比量輸出
10	A1	輸入	0~10V	輔助類比量輸入AIN1
11	A2	輸入	0~10V	輔助類比量輸入AIN2
12	A+	輸入	Rs485	通訊接口
12	В-	輸入	Rs485	通訊接口

● 三. 功能说明

1.操作方式

SAMP01全部操作通過操作觸摸屏完成。操作方式有三種:

1. 短按:按一下立刻放開。

2. 長按:按住不放開,直到觸發對應的功能。通常長按的時候系統會出現一個長按鍵計時的進度 條,進度條走完後才觸發相應的功能。

3. 滑動:按住屏幕移動手指。通常用在設置項的上下滾動。

4. 拖動圖標:拖動圖標到指定的位置觸發對應的功能。

2.主屏幕簡介

下圖是主屏幕顯示畵面, 主屏幕實時顯示放大器的工作狀態。

1. 張力測量值顯示: Tension(L+R)顯示的是檢測器L和檢測器R疊加的總張力值。L, R分別顯示L通道和R通道的測量值。

2. 輔助類比量輸入值顯示: 實時顯示測量到的電壓值。

3. 開關量輸入狀態顯示: 實時顯示開關量MC1的輸入狀態。

4. 類比量輸出值顯示: 實時顯示類比量輸出通道AOUT輸出的電壓值。

5.進入設置菜單按鍵區:長按屏幕最下方的區域,將會出現一個長按計時進度條,一直按住,直到 進度條走滿,即可計入設置菜單。如果在進度條走滿之前松開屏幕,則不進入菜單,計時進度條消 失。

3.設置菜單

在主屏幕長按後即可進入菜單,如下圖所示。點擊對應圖標可進入對應的設置項。點退出可退回主畵 面。

4.零點標定(清零)

檢測器安裝後,為了去除托盤或者導輥等的毛重對測量的影響,或者當檢測器發生溫度漂移或者 蠕變後,需要進行零點標定。

確保已經安裝好檢測導用輥, 並且輥上未通入材料。如下圖:

長按"開始標定"鍵3秒以上,即可執行零張力標定。

5.校準標定

材料張力施加在張力檢測器上的頁載,根據檢測器安裝角度及材料通過角度的不同而異。未對其進項 修正,需要進行張力數值的標定。

校準步驟:

1. 先按上圖在檢測輥上穿上繩子, 並懸掛已知重量的砝碼。

2.點擊畵面中的重量值,會彈出一個數字輸入框,可直接輸入砝碼的重量,輸入完成後按OK鍵。或者 可按畵面中的 —— 或 + 按鈕直接對重量值進行加減。

Digtal Inpu	t Box		
7	8	9	¢
4	5	6	С
1	2	3	+/-
()		ОК

3. 長按住"開始標定"按鈕,待長按計時進度條走滿,即開始進行標定。標定時會顯示一個標定計時 器。計時器進度條走滿後即完成標定。

4.標定完成後,此時張力測量值應該顯示數值W(Kg),把繩子和砝碼卸下後,張力測量值應該復爲為 0。否則請檢查張力檢測器接線,然後重新進行零張力標定和掛重標定。 6.主通道濾波設置

本系統的主通道帶數字濾波器,能濾除輸入信號的幹擾或周期性共振,使輸出信號更加平滑。 在菜單裏點擊"類比量設置",可看到如下畵面。其檢測器濾波是對應檢測器輸入通道的濾波器。

點擊其中一個進入,可看到如下畵面。

🝚 S1滤波设定	Calibration
滤波器类型 :	MAF中值平均滤波 🔻 ?
滤波时间:	200 > Sa 😢
采样速度:	低采样率 🔻 ?
點擊選型框可彈出 點擊設置專案右邊(投置視窗 的問號獲取説明資訊

其中,點擊濾波器類型後面的輸入框,可彈出一個濾波器類型選擇窗口,濾波器類型可已選擇爲以 下幾種:

無: 直接輸出,不經過輸出濾波器濾波(Sinc5濾波器依然生效),這個模式有最高速的響應速度,但對幹擾、噪聲、檢測器的振動/共振會比較敏感。

MACD移動平均值濾波: 該濾波器對檢測器的周期性幹擾,例如共振,固有頻率的幹擾,有着 最優的過濾效果。

濾波時間是指濾波器的采樣個數。數值越大,濾波作用越強,測量越穩定,但響應時間會越長。

采樣速度:是放大器對傳感器的采樣速度。可以選擇:

低采樣率:張力檢出精度最高,抗幹擾能力非常強,但是對張力信號的采樣速度較低,比較適 合於扭矩控制的張力控制場合。

高采樣率: 高速采集張力信號, 但張力檢出精度稍低, 相對低采樣率, 對周邊幹擾敏感一點, 比較適合於高速的張力控制場合。

7. 檢測器通道設置

本設置用來選擇需要使用的檢測器通道(通道1,通道2),以及檢測器的信號類型。 在菜單裏點擊"類比量設定",可看到如下畵面。

點擊"通道選擇"進入,可看到如下畵面。

🔛 通道选择	
通道选择:	通道1+2 🔻 ?
信号类型:	20mV 🔻 ?
點擊選型框可彈出 點擊設置專案右邊	投置視窗 的問號獲取説明資訊

通道選擇:

可選擇需要使用的檢出器通道。

通道1+2: 同時使用兩個通道檢出的張力值,兩個通道的張力值相加,得出總張力。

通道1: 只使用通道1檢出張力。

通道2: 只使用通道2檢出張力。

信號類型:

SAMP03支持20mV和200mV信號類型的張力檢測器。請根據張力檢測器銘牌上標注的信號類型設置。

8.輔助通道(AIN1,AIN2)設置

本系統帶有兩個輔助類比量輸入通道,能接受0~10V的電壓輸入,分辨率為12位。 在菜單裏點擊"濾波設置",可看到如下畵面。其中AIN1濾波和AIN2濾波分別對應AIN1和AIN2的設 置。

點擊其中一個進入,可看到如下畵面。

AIN1 滤波设	定 AIN1 Filter Setup
濾波時間:	200 > 😢
零點偏移量:	-2 > 😢
增益:	1.000 🕨 김
AIN 电压值:	1.000
點擊選型框可彈出設點擊設置專案右邊的	2置視窗 回問號獲取説明資訊

濾波時間:

濾波時間指的是對輸入進行濾波的采樣數。濾波時間的數值越大,測量結果越穩定,但更新速度 變慢,響應時間變長。

零點偏移量:

零點偏移量是用來校正輸入的零點電位。例如當輸入為0V時,如果測量到的電壓卻不是0V,則可以 調節這個參數,加入適當的偏置量,使測量結果與實際電壓一致。

增益:

用來調整測量的電壓倍率。例如當輸入爲10V時,測量結果顯示卻不是10V,則可以調整增益,使測 量結果與實際電壓一致。

AIN電壓值:

實時顯示當前AIN的輸入電壓值,方便調整參數。

9.類比量輸出AOUT設置

本系統帶有1路類比量輸出通道,能輸出0~10V的電壓(或4~20mA電流),分辨率為12位。可以選 擇輸出源是FIL1、FIL2、通訊設定值等。

在菜單裏點擊"類比量設置",可看到如下畵面。

點擊Aout設置進入,可看到如下畵面。

🝚 模擬量輸出語	设置 AOUT Setup	
Aout輸出源:	滤波FIL1	•
零重量電壓:	0.00	0 🕨 🕐
滿量程重量:	(5.000	10 🕨 🔼
滿量程電壓:	9.50	
點擊選型框可彈出語 點擊設置專案右邊的	殳置視窗 り問號獲取説明資語	R 🜔

Aout輸出源:

輸出源是指Aout輸出來源於哪個測量值。可以選擇的有:無濾波、濾波器FIL1、Modbus設置值。

零張力電壓:

零重量電壓是指,當測量值爲0時,Aout對應輸出的電壓值。

滿量程重量、滿量程電壓:

這兩個參數用來調整當測量值等於滿量程重量所設定的值時,Aout對應輸出的電壓。這兩個參數和 "零重量電壓"參數非常有用,可以很靈活的調節Aout的輸出偏置和輸出比例。例如,我們希望測量 值為0Kg時,Aout輸出5V,而測量值為20Kg時,輸出10V,則可以這樣設置:把"零重量電壓"設置為 5.000, "滿量程重量"設置為20.0Kg, "滿量程電壓"設置為10.000。這樣設置的結果是:當測量值 是-20.0Kg時,Aout輸出0V,當測量值是0Kg時,Aout輸出5V,當測量值是20.0Kg時,Aout輸出10V。在-20Kg到20Kg範圍內,是從0V到10V線性對應的。

10.通訊設置

本系統帶有一個RS485通訊接口,通訊協議爲標準ModbusRTU,非常方便與PLC,人機界面,PC上 位機等連接通訊。系統所有的參數均可通過通訊接口讀取和設置。

在菜單裏點擊"通訊設置",可看到如下畫面。

波特率:	19.2Kbps		?
从站号:		{►	?
通讯模式:	普通		?

波特率:

可選擇不同波特率進行通訊,波特率越高,通訊速度越快。可以選擇的波特率有:2400bps、9600bps、19.2Kpbs、38.4Kbps、57.6Kpbs。通訊格式為:8位數據,1停止位,無奇偶校驗。

從站號:

本機的從站號(地址)。

通讯模式:

指的是Modbus通訊的寄存器功能定義。可指定以下幾種模式:

普通模式: 可讀取和定義全部功能參數、系統狀態。

兼容模式:考慮到兼容以往版本放大器,可以選擇選擇使用兼容模式,則寄存器的地址與820定義 一樣。

全16位寄存器模式:寄存器地址定義和普通模式一樣,唯一不同的是每個檢測器的測量值使用2個 16位寄存器來表示。詳見ModbusRTU通訊協議。

11.通訊協議

波特率:可選擇 2400bps, 9600bps, 19200bps, 38400bps, 57600bps。 數據格式: 8N1 無校驗 Modbus RTU 模式。8 位, 1 個停止位, 無奇偶校驗 從站號: 1-250。 其中寄存器定義有以下三種模式。 兼容模式:考慮到兼容以往版本放大器,可以選擇選擇使用兼容模式,則寄存器的地址與 820 定義一樣。 普通模式:可讀取和定義全部功能參數,系統狀態 全 16 位寄存器模式: 寄存器地址定義和普通模式一樣,唯一不同的是每個傳感器的測量值

使用 2 個 16 位寄存器來表示。詳見地址表。

文持的功能啮如下:

	功能碼		名稱	注釋
03	讀寄存器	40001-40029		16 位或 32 位帶符號整型變量
06	寫單個寄存器	40001-40025	 設置對應變量的值 (詳見地址映射表)	16 位或 32 位帶符號整型變量
16	寫多個寄存器	40001-40025	 設置多個變量的值 (詳見地址映射表)	16 位或 32 位帶符號整型變量

兼容模式寄存器定義:

地址映射表:

地址	參數名稱	參數類型	數值範圍	對應 Word 值	注釋
40001	總張力(左+右)	16 位整形	-3276.7Kg —	-32767-32768	
	(只讀)		3276.8Kg		
40002	左傳感器張力	16 位整形	-3276.7Kg —	-32767-32768	
	(只讀)		3276.8Kg		
40003	右傳感器張力	16 位整形	-3276.7Kg —	-32767-32768	
	(只讀)		3276.8Kg		
40004	沒有經過濾波的總張	16 位整形	-3276.7Kg —	-32767-32768	
	カ(只讀)		3276.8Kg		
40005	滿量程標定值	16 位整形	-3276.7Kg —	-32767-32768	
			3276.8Kg		
40006~40012	保留				
40013	濾波器 FIL1 濾波時間	16 位整形	1~250	1~250	
40014	濾波器 FIL2 濾波時間	16 位整形	1~250	1~250	
40015	沒有經過濾波的總張	16 位整形	-3276.7Kg —	-32767-32768	與 40004 寄存器一樣
	カ(只讀)		3276.8Kg		
40016	總張力(左+右)	16 位整形	-3276.7Kg —	-32767-32768	與 40001 寄存器一樣
	(只讀)		3276.8Kg		
40017	沒有經過濾波的總張	16 位整形	-3276.7Kg —	-32767-32768	與 40004 寄存器一樣
	カ(只讀)		3276.8Kg		
40018	總張力(左+右)	16 位整形	-3276.7Kg —	-32767-32768	與 40001 寄存器一樣

(只讀)

普通模式寄存器定義:

地址映射表:

地址	參數名稱	參數類型	數值範圍	對應 Word 值	注釋
40001	總張力(左+右)	16 位整形	-3276.7Kg —	-32767-32768	
	(只讀)		3276.8Kg		
40002	左傳感器張力	16 位整形	-3276.7Kg —	-32767-32768	
	(只讀)		3276.8Kg		
40003	右傳感器張力	16 位整形	-3276.7Kg —	-32767-32768	
	(只讀)		3276.8Kg		
40004	沒有經過濾波的總張	16 位整形	-3276.7Kg —	-32767—32768	
	力 (只讀)		3276.8Kg		
40005	AIN1 的電壓值	16 位整形	0.000V~10.000V	0~10000	AIN1 的電壓,
40006	AIN2 的電壓值	16 位整形	0.000V~10.000V	0~10000	AIN2 的電壓,
40007	MC1	16 位整形	0, 1		0: 未接通, 1: 接通
40008	MC2	16 位整形	0, 1		0: 未接通, 1: 接通
40009	MC3	16 位整形	0, 1		0: 未接通, 1: 接通
40010	DAC 輸出源	16 位整形	0, 1, 2		0: FIL1, 1: FIL2, 2: Modbus
40011	DAC (A O U T) 的輸	16 位整形	0.000V~10.000V	0~10000	Modbus 設定的 DAC(AOUT)輸出
	出電壓				電壓
40012	零重量電壓	16 位整形	0.000V~10.000V	0~10000	測量值為0Kg時對應的輸出電壓
40013	滿量程重量	16 位整形	-32.700Kg~32.7	-32700~32700	滿量程重量值,注意,單位是 0.001Kg
			00Kg		
40014	滿量程電壓	16 位整形	0.000V~10.000V	0~10000	滿量程重量所對應的輸出電壓
40015	零點標定(零點校準)	16 位整形	0, 21930	0, 21930	0: 無操作, 21930: 觸發零點校準
					在觸發校準操作前,需要先對本寄存器
					寫入 0,再寫入 21930,觸發零點校準
40016	滿量程標定值	16 位整形	-3276.7Kg —	-32767-32768	
			3276.8Kg		
40017	保留				
40018	校準標定	16 位整形	0, 21930	0, 21930	0: 無操作, 21930: 觸發校準
					在觸發校準操作前,需要先設置 40016
					和 40017 的校準值, 然後對本寄存器寫
					入 0,再寫入 21930,觸發校準
40019	保留	16 位整形			
40020	FIL1 的濾波器類型	16 位整形	0, 1, 2	0, 1, 2	0: 無濾波
					1: MAF中值均值濾波
					2:MACD移動平均值
40021	FIL1 濾波時間	16 位整形	0~250	0~250	
40022	FIL2 的濾波器類型	16 位整形	0, 1, 2	0, 1, 2	0: 無濾波
					1: MAF中值均值濾波

SAMP03高速高精度張力信號放大器/變送器

					2: MACD移動平均值
40023	FIL2 濾波時間	16 位整形	0~250	0~250	
40024	AIN1 濾波時間	16 位整形	0~1000	0~1000	
40025	AIN1 偏移量	16 位整形	-4095~4095	-4095~4095	
40026	AIN1 增益	16 位整形	0.001~32.000	1~32000	
40027	AIN2 濾波時間	16 位整形	0~1000	0~1000	
40028	AIN2 偏移量	16 位整形	-4095~4095	-4095~4095	
40029	AIN2 增益	16 位整形	0.001~32.000	1~32000	

錯誤返回值:

功能碼	錯誤代碼	錯誤	
01	01	操作地址超出範圍	
02	01	操作地址超出範圍	
03	01	操作地址超出範圍	
05	01	操作地址超出範圍	
	02	修改值錯誤	
06 01 操作地址超出範圍		操作地址超出範圍	
	02	修改值錯誤	
	03	只讀參數, 禁止寫入	

12. 系統設置

在主菜單裏點擊"系統設置",可出現如下界面。

1. 觸屏校準

用來校準觸摸屏感應的坐標位置。一般情況下用戶無須設置。

2. 熒屏亮度

本參數用來設置屏幕背光的亮度。裏面有兩個參數:

1. 屏幕亮度值: 有操作時, 屏幕背光的亮度。

2. 無操作時亮度: 無操作30秒後, 屏幕背光的亮度。一般建議無操作時亮度不要設爲最亮, 用來延 長背光LED的壽命。

3. 工程參數

該功能用來設定系統內部一些參數,不對用戶開放。

4. 關於本系統

顯示硬體/軟體版本,機器序列號,以及廠商信息。

● 四.故障排除与维护

現象	可能故障	解決方法
 1.電源線接錯,正覓極反轉 2.接到高壓電源上,接到220V或380V 3.放大器電源部分已損壞 		1.請檢查電源是否正確連接。 2.接到高壓電源後放大器已燒毀.需返修 3.需返修
不能測量,顯示 "A/D故障"	A/D芯片損壞	需返修
通電後,屏幕白屏或出現裂紋	液晶顯示器損壞	需返修
觸摸屏幕無反應 但TOUCH燈亮	1.未按到對應按鈕 2.觸摸屏需重新校準坐標	1.請按到有效的按鈕上 2.在系統設置菜單裏運行"觸屏校準"
觸摸屏幕無反應 並且TOUCH燈也不亮	觸摸屏已損壞	需返修
不能測量,測量值無變化	1.檢測器未連接好, 或線序錯誤 2.檢測器損壞 3.放大器已損壞	1.請檢查檢測器接線 2.用數字萬用表200mV檔,測量一下檢測器是否有輸出 3.需返修
測量有反應,但不穩定,跳動 很大	1.檢測器未連接好, 或線序錯誤 2.未正確標定	1.請檢查檢測器接線 2.重新標定
類比量AOUT無輸出	1.AOUT輸出源未設置正確 2.外部接線錯誤或短路 3.放大器已損壞	1.請檢查AOUT設置 2.請斷開外部接線,直接用萬用表20V檔測量 3.需返修
通訊不成功	1.波特率,從站號未設置正確 2.外部上位機程序未設置正確 3.放大器已損壞	1.請檢查通訊設置 2.檢查上位機程序是否運行正確,用串口工具抓包分析 3.需返修